

Specifi Public API – Content Integration Examples

Specifi offers a Rest API (Application Programming Interface) which is software that allows Specifi and
another party to interact with each other without any user intervention. The use of these APIs provides
products or services to communicate with other products and services without having to know how
they're implemented.

Product API

• Search for products.

o Send / export

▪ Send product(s), product category, or entire brand

▪ Default attributes include Manufacturer, Model, Short and Long Descriptions,

Dimensions, and Prices.

▪ Additional (Cost) attributes

• Accessory options

• Connections data

• All languages and currencies

• Send attachments including, jpg, dwg, and rfa.

• Receive / import

o Receive new products to add to existing brands

o Receive updated product information including price updates

o Receive accessary mapping parameters

o Receive product attachments

Quote API

• Send / export

o Send this quote

o Send this Purchase Order

o Additional Cost attributes

▪ Include spec sheets

• Receive / import

o Add products to this Quote

o Add products to current personal library

• Add, delete, or modify companies and/or contacts

Specifi Public API – Technical Overview for Developers

The technical stack for Specifi’s Public API consists of:

▪ API Portal - is a password protected documentation resource, where developers can access

Specifi API definitions. These definitions could be easily imported by popular REST clients
such as Postman or Insomnia.
This portal is dynamically created from Specifi’s backend code and therefore it’s always up
to date.

▪ API authentication and authorization layer – Specifi Cloud API is not publicly accessible

(whoever wants to consume it needs to authenticate first) using a special endpoint of
Authentication microservice, exposed via API Gateway (see below).
Upon a successful authentication a JSON Web Token (JWT) is issued, which later could be
used to interact with other Specifi API endpoints.

o JWT is an open standard (RFC 7519) that defines a compact and self-contained
way for securely transmitting information between parties as a JSON object. This
information can be verified and trusted because it is digitally signed, so there is
no chance our APIs could be consumed using a fake token.

o Along with JWT a refresh token is issued, which could be used to get a new JWT
token after existing one has expired, without having to send login information
again and again.

https://www.softwareag.com/en_corporate/resources/api/article/api-portal.html

▪ API Gateway - a single point of entry for 3rd party developers, it sits in between REST client
and Specific’s backend microservices. Providing routing and aggregation.

Besides that it offers the following features:

o it allows Specifi keeping alive 1 or 2 previous API versions of the same service
(e.g. in the future for reverse compatibility) allowing 3rd party developers to
gracefully migrate their API integrations to newer versions without breaking
anything on their side

o allows collecting detailed analytics for both internal and external usage of APIs

o it offers throttling capabilities (slow down applications issuing too many calls per
second)

o could provide an additional caching layer for repetitive calls (from 3rd party
consumers), to avoid heavily loading “real” API services behind the gateway and
therefore avoid denial of service situations

o it allows conditional access (e.g. in case of a paywall)

https://www.softwareag.com/en_corporate/resources/api/article/api-gateway.html

Tables of Content

• Tables of Content

• Tools, libraries etc

• Testing code snippets

Tools, libraries etc
• Swagger of Catalog API (username specifi password D36rbp3E)

• Online JWT testing tool

Testing code snippets

We recommend testing integration with our Catalog by creating an brand new .NET 6-8

console applicaiton.

After creating the project, just install add some NuGet libraries

<PackageReference Include="Microsoft.Extensions.Http" Version="7.0.*" />

Use sample below to generate a JWT and get your first search results:

using System.Net.Http.Json;

using System.Text.Json.Serialization;

var specifiApiUrl = new Uri("https://api.specifiglobal.com");

var httpClient = new HttpClient { BaseAddress = specifiApiUrl };

var userResponse = await httpClient.PostAsJsonAsync("users/login",

 new

 {

 Email = "adams@mcft.com",

 Password = "4OFBU9FQ",

 });

var userLogin = await userResponse.Content.ReadFromJsonAsync<UserLogin>();

https://specifi.atlassian.net/wiki/spaces/CATEMBED/pages/1523810305/Catalog+API+C+example#Tables-of-Content
https://specifi.atlassian.net/wiki/spaces/CATEMBED/pages/1523810305/Catalog+API+C+example#Tools,-libraries-etc
https://specifi.atlassian.net/wiki/spaces/CATEMBED/pages/1523810305/Catalog+API+C+example#Testing-code-snippets
https://api.specifiglobal.com/docs/catalog/index.html
https://jwt.io/

var httpClientAuth = new HttpClient { BaseAddress = specifiApiUrl };

httpClientAuth.DefaultRequestHeaders.Add("Authorization", $"Bearer {userLogin.AccessToken}");

var catalogResponse = await httpClientAuth.PostAsJsonAsync("catalog/search/products",

 new

 {

 Culture = "en",

 Size = 10,

 From = 0,

 SearchByQueryString = false,

 Query = "",

 UseSearchAfter = true,

 Filters = new object[0],

 Sort = new

 {

 Field = "ModifiedTime",

 Direction = 1,

 },

 Token = userLogin.AuthorizationToken,

 });

var productsJson = await catalogResponse.Content.ReadAsStreamAsync();

Console.WriteLine(productsJson);

Console.ReadLine();

class UserLogin

{

 [JsonPropertyName("access_token")]

 public string AccessToken { get; set; }

 [JsonPropertyName("refresh_token")]

 public string RefreshToken { get; set; }

 [JsonPropertyName("authz_token")]

 public string AuthorizationToken { get; set; }

}

